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ABSTRACT

A concise synthesis of a differentially protected D-galacturonic acid ( b-GalA) thioglycoside and the construction of a potent immunomodulating
glycosphingolipid are described. The key steps of the synthesis are an Evans aldol reaction between a C4 aldehyde and a PMB-protected
glycolyloxazolidinone as well as a tandem-PMB-deprotection/cyclization to thioglycosides. The key glycosylation step is optimized by varying

the anomeric leaving group, the activating agent, and the solvent system.

p-Galacturonic acidi-GalA) constitutes the most abundant, active molecules as molecular probes for biomedical inves-
naturally occurring uronic acid. As a-(1—4)-linked ho- tigations are thus needed. Although oligosaccharide synthesis
mopolymer, homogalacturonane, it forms the major constitu- has been subjected to a large number of improvements, a
ent of pectint and as ao-(1—4)-linked species it is also  typical monosaccharide building block synthesis still mainly
present in the immunogenic lipopolysaccharides of various relies on tedious protection and deprotection steps in order
pathogenic bacteri.Furthermore, several bacterial gly- to access the required protecting group patfeBre novo
cosphingolipids contain-GalA that forms ar-glycosidic  synthesig circumvents these disadvantages by the use of
linkage to a ceramide (e.gh, Scheme 1j.These glycolipids  preprotected linear fragments and not starting from the

exhibit an intriguing biological activity, since they are corresponding unprotected sugar.
recognized by human natural killer T (NKT) cells, after

binding to CD1d, and induce immune respof$KT cell
activation has been studied in the past decade in the contex
of autoimmune diseases and cancer researefficient
syntheses oii-(1—4)-linkedp-GalA containing biologically

Here, we report a short and high yielding synthesis of
pifferentially protectea-galacturonic acid thioglycosides as
part of our ongoing program directed at the de novo synthesis
of selectively protected carbohydrate building blogk3ur
building block was then used to synthesize a highly im-
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following two protection-deprotection steps. The linear C6-
acetalC can be dissected into monoprotected C4-aldehyde
E and known glycolate oxazolidinong'? by a retroaldol
reaction. In order to establish the desired configuration on
C-4 and C-5, a 2,3-syn-3,4-anti-selective Evans aldol

Scheme 1. Retrosynthesis of Glycosphingolipil
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Table 1. Evans Aldol Reaction
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munogenic galacturonosylceramide) from Sphingomonas ¢
yanoikuyaé.

The retrosynthetic plan is presented in Scheme 1. Glyco- entry _donor conditions dr yield (%)
conjugateA can be dissected into benzyl-protected ceramide 1 D1  BusBOTY, NEts, toluene® np
F and p-GalA building blockB. For the synthesis of the 2 D1  TiCly, DIPEA, CHsCly, 0 °C15 np
ceramide part, sphingosi@and fatty acicH are connected 3 D1 TiCly, DIPEA, CHpCly>1 np
by amide coupling. AcicH is derived from 1-tetradecene 4 ~ D2 LDA, CHchZZ np
via a dihydroxylation/oxidation sequence, whereas amino 2 D2 LDA, toluene 2.3:1 49
alcohol G is prepared according to Howell etdlstartin 6 D2 LDA, Et;0° 4.6:1 50

prep 9 9 7 D2 LDA, THF® 491 90

from the Weinreb amide df-Boc+ -serine!! Key thiogly-

coside B will be formed by cyclization of thioacetaT, * Temperature:—50 to —30 °C. " ~78 °C.
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enantiomeric forms of the oxazolidinone auxiliary can be
employed to construct the desired diastered¥iehe desired
aldol product was obtained after considerable trials by an
LDA-promoted Evans aldol reaction af78 °C with auxiliary
D2 in toluene (Table 1, entry 7). Aldd was obtained in
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The synthesis of fatty aciti starts from commercially

Scheme 2. Synthesis oBa, 5b, and6 available 1-tetradecene (Scheme 3). Treatment with AD-
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H G OBn
smoothly to give the fully protected amid&a and 3b in F

quantitative yield. Treatment of thioace&d with 1.8 equiv
of anisole and 5% trifluoroacetic acid in dichloromethane
resulted not on|y in the C|eavage of ﬂpen]ethoxybenzy| mix-a. afforded diol 8 in 75% y|e|d22 The enantiomeric
ether, but also in concomitant cyclization. The desired €xces¥ of 78% is in line with observations by Sharpless et
p-galacturonic acid thioglycosidéawas afforded after this al 2?0 for aliphatic alkenes with comparable chain length. Both
transformation in 92% yield. Thioacetab was converted ~ hydroxyl groups were differentiated by protection of the
into 4b in 93% yield employing the same procedure. In primary alcohol with triphenylmethyl chloride. The second-
both cases, anomeric mixtures were separated by flashary hydroxyl was then benzylated to furnisin 75% yield,

column Chromatography and the.product was used in over two StepS. Tr|ty| CleaVa.ge with TFA and triethylsilane
further steps. in methanol proceeded in 81% yield. Alcoh@D was

subsequently oxidized using catalytic amounts of TEMPO
and bisacetoxyiodobenzene (BAIB) as cooxidant to give the
corresponding carboxylic acitl in 93% yield?* Finally,
EDCI/HOBt-promoted amide coupling between anmhand

acid H yielded the desired diastereomer of ceramida
080% yield and at this stage the undesired diastereomer could
be separated.

With galacturonic acidsaand5b and ceramidé in hand,
glycosylation to yield conjugat&l was studied (Table 2).
The main challenges, when performing these reactions, could
be attributed to the relatively poor solubility of ceramide
in many solvent systems at low temperature. During these
studies, the well-known benefits of etheand the remote
anchimeric assistanteof C4 esters in galacto-configured
systems in obtaining good-selectivities became again
apparent, as omission led to a dramatic increasé-gty-
coside formation. A compromise between yield and selectiv-
ity was found by employing acetyl-protected thioglycoside

Methanolysis of the chiral auxiliary in the presence of an
ester protecting group on C4 posed problems. Attempts to
conduct this transformation with sodium methoxide in
methanol” or catalytic amounts of DMAP in methandlvere
not successful. In both cases parfiatlimination of the C4
ester groups occurred. The reaction proceeded smoothly t
yield the methyl ester§a and5b in 80% and 81% vyield,
respectively, when samarium(lll) triflate in methanol (30 mol
%) was employed? No competing cleavage of the ester
groups was observed. Thus, botlgalacturonic acid thiogly-
cosides were obtained in only four steps from kn&wand
readily accessible aldehyde

Thioethyl glycoside5a was easily converted to the
alternative glycosylating agent, glycosyl phosph&teipon
NIS-promoted glycosidation with dibutyl phosphoric acid.
Deprotection of the C4 protecting groups to yield thiogly-
coside? proved to be facile. Both levulinoate and acetate
esters could be removed, with either hydrazine in acetic acid

and pyridiné®® or in a methanolic HCI solution respectively. (21) Characteristic coupling constants between H-4 and B-5 (.3

Thus, this building block can be used for the assembly of I-rI]Z) é:ls we(ljl aslbetweean-B and H-f4b@%4 th)l) ugambiguouslyl reveal
P A\l the desired galacto configuration of building blog&. NOE correlations
structures containing (1—4)-linkentGalA. between H-5 and H-4 as well as between H-4 and H-3 confirmed the

At this stage, the diagnostic coupling const&hserved assignment. NOE spectra can be found in the Supporting Information.
. - - . . (22) (a) He, L.; Byun, H. S.; Bittman, R. Org. Chem2000,65, 7618.
to confirm thep-galacto configuration om-thioglycoside (b) Kolb, H. C.; Vannieuwenhze, M. S.; Sharpless, Kdbiem. Re21994,
5a2t 94, 2483.
(23) The % ee was determined by conversion of the diol to the bis ester
with (—)-R-Mosher’s reagent and subsequititNMR analysis.
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(19) (a) Evans, D. A.; Coleman, P. J.; Dias, L. Ahgew. Chem., Int. (26) (a) Miljkovic, M.; Yeagley, D.; Deslongchamps, P.; Dory, Y..1L
Ed. Engl.1997,36, 2738. (b) Castagner, B.; Leighton, J.Tetrahedron Org. Chem.1997,62, 7597. (b) Demchenko, A. V.; Rousson, E.; Boons,
2007,63, 5895. G.-J.Tetrahedron Lett1999 40, 6523. (c) Cheng, Y.-P.; Chen, H.-T; Lin,
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Table 2. Glycosylation Studies Scheme 4. Global Deprotection of Glycosphingolipid
0 CoaMe Aeq GOaMe RO core o RO CORy o
Bno&’ Bno‘m\ ° 60 0, HN)J\;/C12H25 RO HNJ\_/C12H25
BrOge BnOg g Tabe2 BnO i OB RO : 0R
AN O~ -CisHar o] : CqsH
- BuQ OBu ¢} 15131
gg E = ,II-_\;v ¢ Hl:lij”st \/\Oan \/HO/R
Z OBn
X, HO A CrsHan 11a:R'=Ac,R2=M PA(OH),/C, Hp, 93% [, 11aR=Bn Ry=Ac, Ry=Me Pd(OH),/C, H
Ay \/\ggn 11; RT= sz, RZ= l\:e ) o - 12 R=Bn.Ry=H,R;=H :| Et(gH, g:ZHCI372£1%
o) . 11e: R = Ac. R2= Xg LiOH, H,0,, THF 75%§ 13 R=H,R;=Ac R;=Me
BnO HO
COH o]
4aBnoSEt o G HNJ\__/szst
Ho i OH
0\/\‘/C15H31
entry  donor conditions® product o/Bb  yield (%) A o
14  4a(o) NIS/TBSOTf¢ 1le <10
2¢  4a(a) NIS/TfOHE 11c 1.0:1 45
37 5b(o) NIS/TfOH? b 2.0 49 esterl3in 74% vyield. Finally, the acetate and methyl ester
4d 5b(a) DMTST" 11b <10 A S
of 13 were removed using lithium hydroperoxide in THF,
59 6(wp) TMSOTf 11ac  2.1:1 96 ! . L
6/ Ba() NIS/TfOHE 11ac 371 85 to yield fully deprotected glycosphingolipid.
7 5a(a) NIS/TfOH? 11a¢  4.2:1 85 The chemistry presented here offers a convenient and high-

2 Temperature-10 °C and 1.5 equiv of donof.Ratio determined by yle_ldllng route for the prepar-atlor.l of suitably protected
IH NMR. ¢ The a- andp-products could be separated by column chroma- building blocks ofp-galacturonic acid. Our strategy for the

f,ogrl’"ggmEﬁ%—edéﬁ?\'/‘”metha”e (1:1FDioxane-toluene (3:1)'1.5equiv. o oy synthesis is based on the convergent connection of
linear synthetic intermediates, thus regioselective protection
steps as well as anomeric protection are no more necessary.

5aand the NIS/TFOH activator system. Thus, the product Consequently, orthogonally protectedGalA thioglycoside

11a was isolated in 85% vyield and 4.2:1 selectivity with @& iS obtained from known and easy available aldehgde

dioxane/toluene (3:1) as solvent. Both anomers were sepadn only four steps and 56% overall yield.

rated by flash column chromatography. To the best of our These results should facilitate future syntheses of this

knowledge, this result represents the mastelective gly- important class of immunological probes.
cosylation reaction between a galacturonic acid building  Application of the de novo strategy for rapid and efficient
block and a ceramide reported so . preparation of other orthogonally protected carbohydrate

Having optimized the glycosylation reaction, all protecting puilding blocks is currently under investigation and will be
groups had to be removed. The initial plan was to cleave reported in due course.

first the acetate and the methyl ester of glycoconjudde
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